TerraCycle Programs

09.16.2019

0600

TerraCycle offers a range of free programs that are funded by conscientious companies, as well as recycling solutions available for purchase for almost every form of waste.

TerraCycle offers free recycling programs funded by brands, manufacturers, and retailers around the world to help you collect and recycle your hard-to-recycle waste. Simply choose the programs you’d like to join; start collecting in your home, school, or office; download free shipping labels; and send us your waste to be recycled. You can even earn rewards for your school or favorite non-profit!

TerraCycle reuses, upcycles, and recycles waste instead of incinerating or land filling it. This moves waste from a linear system to a circular one, allowing it to keep cycling in our economy. 

You can collect points, by collecting trash for your specific program and then redeeming your points. You can redeem your points by either receiving a cash value, or you can donate the points to charity. There’s a list of charities that team up with TerraCycle, in which you can choose to donate your points to.

I always donate my points, since I think this program is a great way for charities and companies to get involved with creating less waste, and I really don’t value the cash redemption as much.

Some of the charity organizations I was looking at to donate my points were:

  • 100 points = Help safeguard 1 acre of rain forest for 1 year in the Northwest Gaia Amazon.
  • 1 point = Help http://www.Carbonfund.org to reduce a 2 pounds of emissions from the atmosphere.
  • 1,000 points = Help http://www.Carbonfund.org to reduce a metric tonne or 2,205 pounds of emissions from the atmosphere.
  • 300 points = Have a tree planted in an American forest through Arbor Day Foundation
  • 300 points = You can provide one year’s supply of clean drinking water to a person who otherwise would lack access to this most essential element. 
  • 625 points = You can help the D’Addario Music Foundation give one child a free music lesson.
  • 2500 points = You can help the D’addario Music Foundation provide a child with 4 music lessons for a week. Kids who study music are 5x more likely to stay in school, graduate on time and apply to college.
  • 100 points = For every 100 points, TerraCycle will send $1 to the American Red Cross to provide aid to those affected by natural disasters.

For this round, I decided to split my points between a couple of different charities. I decided to redeem my points with:

  • Providing one year’s supply of clean drinking water to a person who otherwise would lack access to this most essential element
  • Help http://www.Carbonfund.org to reduce emissions from the atmosphere

If you want to participate in the TerraCycle programs, check them out at https://www.terracycle.com/en-US/select-country to see which programs you can join. The participating companies change often, so check back with the website to see updates. There are a lot of programs to choose from and supporting the partnership between TerraCycle and the participating companies creates more awareness to how much trash we produce, and how companies take responsibility for the trash they pass onto us consumers.

Zero Waste Week 2019

09.03.2019

0600

Zero Waste Week is here! This year we have more participants and the event is hoping to reach a larger audience. Rachelle Strauss is the creator and director behind Zero Waste Week, an annual awareness campaign since 2008. It takes place in the first full week in September each year, and promotes awareness in producing rash and the disposal of trash. Zero Waste Week encourages the public to be more aware of how much trash they produce as well has encouraging people and businesses to live and work more sustainable and reduce their carbon footprint. She has been featured in The Guardian, National Geographic and The Sun for her efforts in promoting awareness for a more sustainable future.

This is my third year participating in Zero Waste Week as an ambassador. I’m so grateful and proud to be a part of this movement. There are many others who are and have been a part of this movement long before I came along, you can meet them at Zero Waste Week Ambassadors. You can also read all about this week and get involved at Zero Waste Week- About.  Use the hashtag #ZeroWasteWeek to show us your progress! 

This year, the theme is Climate Change, and our decisions that effect climate change.

Carbon dioxide (CO2) and other greenhouse gases always have been present in the atmosphere, keeping the earth hospitable to life by trapping heat. Yet, since the industrial revolution, emissions of these gases from human activity have accumulated steadily, trapping more heat and exacerbating the natural greenhouse effect.

As a result, global average temperatures have risen both on land and in the oceans, with observable impacts already occurring that foretell increasingly severe changes in the future. Polar ice is melting. Glaciers around the globe are in retreat. Storms are increasing in intensity. Ecosystems around the world already are reacting, as plant and animal species struggle to adapt to a shifting climate, and new climate-related threats emerge.

September 2, 2019, DAY 1:

This year’s topic is climate change.

An overwhelming body of scientific evidence paints a clear picture: climate change is happening, it is caused in large part by human activity, and it will have many serious and potentially damaging effects in the decades ahead. Scientists have confirmed that the earth is warming, and that greenhouse gas emissions from cars, power plants and other man made sources are the primary cause.

September 3, 2019, DAY 2

Reducing food waste and food packaging in the kitchen.

An estimated one third of all food produced in the world, goes to waste; that’s equivalent to 1.3 billion tons of food. This loss of food could be for a number of reasons, such as the fact that the foods never leave their farms, get lost or spoiled during transportation or are simply thrown away. When we waste food, we waste all of the energy and water used to used to produce the foods as well. Here are a few blog posts on my methods to deal with food waste and how purchase my food.

September 4, 2019, DAY 3

Climate change in the closet.

Choosing slow fashion has been a hot topic in the past few years. The textile industry. is one of the most polluting industries, producing 1.2 billion tonnes of CO2 equivalent ( CO2e ) per year, which is more emissions than international flights and maritime shipping. Over 60% of textiles are used in the clothing industry and a large proportions of clothing manufacturing occurs in China and India, countries which rely on coal-fueled power plants, increasing the footprint of each garment. It has been stated that around 5% of total global emissions come from the fashion industry.

Fast fashion is produced on shorter time frames with new designs appearing every few weeks to satisfy demand for the latest trends, but with this comes increased consumption and more waste. It has been estimated that there are 20 new garments manufactured per person each year and we are buying 60% more than we were in 2000.

By choosing to shop at thrift shops, or swapping with friends and neighbors, helps reduce the amount of newly manufactured clothing brought into the home, and it helps reduce the amount of clothing that ends up in the landfill.

Below are a few blog posts related to fast fashion, and how I deal with that issue. I love every piece of my wardrobe and I try to repair my clothes as often as I can, to lengthen the life of my garments. I buy new clothes very seldom, because thrift shops offer so much more variety to chose form.

September 5, 2019, DAY 4

Climate change in the bathroom?

The U.S. Environmental Protection Agency names phosphorus, nitrogen, ammonia and chemicals grouped under the term “Volatile Organic Compounds” as the worst environmental hazards in household cleaners.

Ammonia is a multipurpose household cleaner that is found in many cleaning products that do everything from degreasing to sanitizing and removing allergens.

Household cleaning seems to be a sensitive subject for many. There are a variety of sanitary concerns and medical concerns. As for me, I use a vinegar and water mix, baking soda and a bristle brush to clean.

You can read more about my approach to household cleaning in the links below. 

September 6, 2019, DAY 5

The zero waste lifestyle is a lifestyle change.

Zero Waste is for life, not just a week! Plastic pollution, trash pollution, water and soil pollution is an ongoing battle. A zero waste lifestyle does require an awareness of oneself and decisions. There are parameters that some of us deal with, and that others don’t, such as medical conditions, personal health and financial constraints.

The proliferation of single-use plastic around the world is accelerating climate change. Plastic production is expanding worldwide, fueled in part by the fracking boom in the US. Plastic contributes to greenhouse gas emissions at every stage of its life cycle, from its production to its refining and the way it is managed as a waste product

By reducing your plastic waste, plastic purchases, and opting for more environmentally friendly alternatives, can help alleviate the amount of plastic waste you produce. Also, by choosing slow fashion, and more sustainable garment materials, will also help lengthen the life of your wardrobe pieces and not contribute to the fast fashion industry. Additionally, using non-toxic alternative household cleaners, will also help your indoor air quality. Using non- toxic chemicals also will help keep Nitrogen, phosphorus and ammonia out of the  rivers, streams, lakes and other waterways.

If you want to read about my moments and lessons throughout my zero waste journey, you can check out the links to my previous blog posts below. 

I hope you will want to take the pledge and reduce the amount of trash you consume, and reduce your carbon footprint. If you want to read about my journey and how I got started, you can read that here in, How I Got Started

September 2- September 6, is #ZeroWasteWeek – Sign up here! goo.gl/oqHvRk. Isn’t it time to ReThink Waste? We think so! Join @myzerowaste for this year’s  #ZeroWasteWeek  goo.gl/oqHvRk. Come participate with all of us!

At the end of the week’s festivities, it’s time to take all you’ve learned during the week and start/continue your own plastic free and climate change journey. There are a lot of Pinterest boards, Facebook Groups and forums that offer tips to start a zero waste lifestyle or tips for different experiences with the zero waste lifestyle. You can check out my own social media boards and follow me, or you can follow the Zero waste Week community on Facebook, Twitter, Pinterest, and Instagram

Celebrate Earth Day 2018

03.15.2018

0600

Earth-Day

 

Earth Day is an annual event celebrated on April 22. Worldwide, various events are held to demonstrate support for environmental protection. First celebrated in 1970, Earth Day events in more than 193 countries are now coordinated globally by the Earth Day Network.

This year, in the celebration of Earth Day, I thought I’d walk through my process of how to do a plastic audit in your home. But first, let’s take a look at the dangers of plastic and why it is not as recyclable as we are lead to believe.

EDUCATE YOURSELF ON PLASTICS

  • What do you know about plastics? Although it is one of the most common packaging material used worldwide, it ends up in our landfill and our oceans. It eventually makes its way back to us through the foods we consume. There are also a lot of facts that are not widely known, here are some facts from the Plastic Pollution Coalition.
  • Although it was considered one of  the breakthrough materials discovered in 1907, only now are we realizing the damaging consequences of using this material so rapidly. How is it harmful?
  • There is a huge misconception that all plastics can be recycled, however, that is not the case. Microplastics are small plastic particles in the environment. They come from a variety of sources, including cosmetics, clothing, and industrial processes.Two classifications of microplastics currently exist: primary microplastics are manufactured and are a direct result of human material and product use, and secondary microplastics are microscopic plastic fragments derived from the breakdown of larger plastic debris like the macroscopic parts that make up the bulk of the Great Pacific Garbage Patch. Both types are recognized to persist in the environment at high levels, particularly in aquatic and marine ecosystems.Because plastics do not break down for many years, they can be ingested and incorporated into and accumulated in the bodies and tissues of many organisms. The entire cycle and movement of microplastics in the environment is not yet known, but research is currently underway to investigate this issue. Here is more information from the National Ocean Service, What are microplastics?
  • Why is recycling not effective? Learn about the different types of plastics

HOW TO TAKE ACTION TO REDUCE PLASTIC IN YOUR HOME

  • What plastics can you REDUCE or better yet, REFUSE in your home? Track the amount of plastic used in different rooms/areas of your home by using the  Daily And Monthly Plastic Pollution Chart (this chart is a template, feel free to customize it)
    • Keep track of items that are contained in plastic by going through areas such as your: (add or take out any items that are missing or not applicable in the chart)
      • Kitchen
      • Bathroom
      • Bedroom
      • Home interior
      • Home exterior
      • Home etc.
    • Slowly go through and keep track of each item on a daily basis or monthly basis
  • After charting each item, plan how to avoid  purchasing plastics by using the Plastic Pollution Audit Chart. What actions will you take to reduce the amount of plastic being brought into the home? Can you refuse the plastic packaged product by finding an alternative in a non-packaged form? Or would reducing the amount taken in be a better step for you? Maybe consider investing in a sustainable, resuseable product, so you eliminate the single use plastic product.
  • If you choose to keep track of your plastic use on a monthly basis, you can audit each month by recording how much plastic you use and compare your yearly results using the Plastic Pollution Tracker.

SOME OTHER ACTIVITIES TO CELEBRATE EARTH DAY

  1. Around your home
    1. Change out all of your light bulbs to energy efficient CFL or LED light bulbs. The energy savings of cooler-burning bulbs, including CFL and LED, can have a significant impact on your utility bills and on making your home greener. An Energy Star light bulb replaces about six incandescent light bulbs because it lasts six times longer than the average light bulb.
    2. Change out your dangerous household cleaners with safer versions or make your own from vinegar/apple cider vinegar and water. Vinegar is a mild acid, which makes it a great multi-purpose cleaner for around the house. As a household cleaner, vinegar can be used to do anything from removing stains, to unclogging drains, to disinfecting, to deodorizing, and it can even be used to remove stickers. You can use it undiluted, combined with baking soda, or as an ingredient in a homemade household cleaner, and every room in your house can benefit from vinegar in some way. Check out 45 Uses For Vinegar.
    3. If you have the option of drinking tap water, switch to tap water or buy a attachment filter if needed.
    4. Stop catalogs and junk mail by signing up with Data and Marketing Association
    5. Opt out of credit card solicitations with Opt Out PreScreen
    6. Pack your car with reusable grocery bags so you won’t forget them on the next shopping trip
    7. Watch environmental documentaries to learn more about what has been researched and discovered through these films. Here is a list of some movies I found on Youtube in which you can watch for free.
      1. Home (2009 film)
      2. A Fragile World (Climate Change). Full Documentary
      3. Plastic: the Real Sea Monster (Full Environmental Documentary) I Spark
      4. China’s Wealth, Growth, and Environmental Nightmare (full Documentary) 
      5. Zero Waste in Business: Documentary on Business and Environmental Waste (Full Documentary) 
      6. A World Without Water (Environmental Catastrophe Documentary) 
      7. The World in 2050 [The Real Future of Earth] – Full BBC Documentary 2018
      8. The Antarctica Challenge: A Global Warning
      9. Years of Living Dangerously Premiere Full Episode 
      10. Plasticized – Feature Documentary Film 
  2. With your community
    1. Bike or take public transportation instead of driving. Instead of driving everywhere, try taking public transportation, biking or even walking to places.
    2. Schedule a visit your local recycling center and tour the facilities to understand where your trash goes and how it gets sorted. It sounds strange but every piece of trash we throw away has a different route towards recycling or on its way to the landfill.  Each county and each state has different recycling processes and so learning about your local recycling process is always helpful. You’ll be more informed and more aware of what REALLY happens when you recycle your trash.
    3. Join a local park, river or beach clean up.
    4. Plant a tree, herb garden, or even flowers!
    5. Check out your local city’s or county’s Earth Day activities

Earth Day will be celebrated on April 22, 2018 this year, so you still have over a month to decide what you want to do! Check out the Earth Day Network to find out more information. They have an extensive website that has a list of campaigns and activities for participants.

In the honor of Earth Day, check out some of these  blog posts from other fellow bloggers:

Adopted 16 Acres Of Wildlife Land

05.30.2017

0700

Who knew that when I joined TerraCycle, that I would end up adopting and protecting 16 acres of land. Let me start from the beginning…

I first joined TerraCycle in an attempt to recycle my beauty products, this included my makeup and bathroom product bottles. They offer programs that will collect certain kinds of trash and recycle them. They have free recycling programs, large scale recycling programs as well as zero waste boxes, which are not free.

There were about 28 free recycling programs when I first joined in 2015 and they now they have about 36 free recycling programs. The programs all have a different point reward system for how much trash you’re able to return to the program. They also offer a variety of contests and promotions for different programs at different times.

You can collect points and either receive a cash reward, collect point for a specific school or organization or donate the points to a good cause.  The organizations can provide resources such as clean drinking water, provide a meals, adopt wildlife land, reduce two pounds of carbon from the atmosphere, provide education or even help disaster victims.

As for me, I donated my points to adopting 1,800 square feet of wildlife land and I wanted to know more about the program so I visited National Wildlife Federation’s Adopt a Wildlife Acre Program.

Here is the conflict:

Yellowstone is home to the most diverse assortment of wildlife found anywhere in North America. But once these iconic species leave the protected borders of the park—they are often at odds with neighboring ranchers who utilize public lands for livestock grazing. Grizzly bears and wolves are often killed or relocated when they attack livestock on National Forest lands where ranchers hold grazing privileges.

National Wildlife Federation’s Adopt a Wildlife Acre program addresses the conflicts between livestock and wildlife with a voluntary, market-based approach. We offer ranchers a fair price in exchange for their agreement to retire their public land grazing leases.

In most cases, livestock producers use our funds to relocate their livestock to areas without conflict. Wildlife has secure habitat, and rancher’s cattle can graze in an area with fewer problems.

It’s an interesting program and I really liked contributing to it. I initially donated my points to towards this program but then, decided to make a donation to cover more of how much I was helping protect the wildlife land.

This goes without saying, but there are many different organizations to donate to and it’s up to you to decide how much you want to participate in each. I wanted to share what the decision of joining a recycling program lead me to.  I never thought I’d adopt 16 acres of wildlife land. This has been an amazing journey and I’m so glad I took a chance to start with this organization.

untitled
adopt-36-sq-feet-of-wildl Page 002

Understanding Recycling Light Bulbs

 

10.20.2016

0800

cfl-recycling-process

Recycling Light Bulbs Link

Trying to understand how light bulbs are recycled takes a little more research on my part. I honestly have never known how recycling centers go about recycling light bulbs. Due to the many different materials that make up light bulbs, I could only guess that the process was tedious. So here is an overall step by step process of the recycling process:

  1. Lamps are sent to the recycling facility
    1. Upon arrival at the recycling facility, lamps are removed from their containers and fed into specialized machine for recycling lamps. The entire process is fully automatic and incorporated in a container in which the air is brought to subpressure, thereby preventing mercury from being released into the environment.
  2. By-product separation
    1. With the aid of a sophisticated patented air transportation system, the phosphor powder is separated in different steps from the glass and metal by-products.
  3. Glass and aluminum stored
    1. Clean glass and aluminum end-caps are separated and stored for re-use.
  4. Mercury is isolated
    1. The mercury bearing powder is collected in distiller barrels beneath the cyclone and the self-cleansing dust filters
  5. Mercury is extracted
    1. The powder is then retorted to drive out the mercury.
  6. Elements are ready for re-use
    1. At the end of the process the glass, metal end-caps, powder, and mercury can all be re-used.
  7. Recycling certificate is issued
    1. Once the materials have been fully processed by the recycling facility, an official Certificate of Recycling will be produced and emailed to you for record keeping.

This is an overall general process of light bulb recycling. As much as you can- please, please recycle these products carefully and appropriately. There are a lot of different materials that go into the production process of producing lamps that can harm the environment and the toxic materials will always come full circle back to us.

Understanding Recycling Paper And Cardboard

 

10.18.2016

0800

paper_recycling_diagram

Paper Recycling Process Link

Paper is one of the more utilized materials that we use in our society. It’s an amazing material that is very versatile in many uses. Although recycling paper seems like a simple process, different types of paper, create different issues when it comes to the recycling process.

In 2011, 66.8 percent of paper consumed in the United States was recycled. Every ton of paper recycled saves more than 3.3 cubic yards of landfill space, and if you measure by weight, more paper is recovered for recycling than plastic, aluminum and glass combined. Paper is a material that we’re used to recycling, since 87 percent of us have access to curbside or drop-off recycling for paper.

The process of recycling paper can be summed up into a few simple steps:

  1. Paper is taken from the bin and deposited in a large recycling container along with paper from other recycling bins.
  2. The paper is taken to a recycling plant where it is separated into types and grades.
  3. The separated paper is then washed with soapy water to remove inks, plastic film, staples and glue. The paper is put into a large holder where it is mixed with water to create ‘slurry’.
  4. By adding different materials to the slurry, different paper products can be created, such as cardboard, newsprints or office paper.
  5. The slurry is spread using large rollers into large thin sheets.
  6. The paper is left to dry, and then it is rolled up ready to be cut and sent back to the shops.

Here Are Some Facts About Paper Grades:

  • Paper Grades – There are five basic paper grade categories, according to theEPA. While these terms may be most useful to paper mills looking to process certain kinds of paper, you may hear these terms once in a while, and it’s possible you’ll need to be able to distinguish between them.
    • Old Corrugated Containers – You might know this as “corrugated cardboard.” It’s most often found in boxes and product packaging.
    • Mixed Paper – This is a broad category of paper that includes things like mail, catalogs, phone books and magazines.
    • Old Newspapers – This one is pretty self-explanatory. Mills use newspapers, a lower grade paper, to make more newsprint, tissue and other products.
    • High Grade Deinked Paper – This quality paper consists of things like envelopes, copy paper and letterhead that has gone through the printing process and had the ink removed.
    • Pulp Substitutes – This paper is usually discarded scraps from mills, and you probably won’t have to worry about running into it, though it may find its way into products you buy.

Some Paper Recycling Curiosities:

  • Once you know what kind of paper recycling is available to you and which types of paper are recyclable, you might still have some questions about paper recycling. Here are a few common items that cause confusion:
    • Shredded Paper – Ever wondered whether shredded paper can be recycled? The answer is yes, though you may encounter some restrictions regarding the size of the shredded pieces and the way the paper is contained. Check with your local recycling program for specific information.
    • Staples & Paper Clips – Believe it or not, equipment at paper mills that recycle recovered paper is designed to remove things like staples and paper clips, so you don’t need to remove them before recycling. It is probably in your best interest to remove paper clips, though, so they can be reused.
    • Sticky Notes – If your local recycling program accepts mixed paper, it will most likely accept sticky notes. Paper mills that process mixed paper are able to remove adhesives. To be on the safe side, check with your local program to make sure sticky notes aren’t a problem.

Understanding Recycling Glass

10.13.2016

0800

glassreyc

Glass Recycling Process Link

Of all the materials that we are continually reminded of as consumers to recycle, glass has to be within the top three on that list; the other being paper and aluminum. I have to admit that I prefer glass and aluminum over paper though. Paper cannot be washed clean of oils and for paper that has oil soaked into it, it can’t be recycled along with clean paper. The simple reason for that is because paper is usually heated and washed which will release the oils into the batch of paper being recycled and therefore contaminate the other clean paper. It will however, compost nicely.

But I digress. If I absolutely must buy a product, I will search for it first in a non-packaged form, then I will look for the product packaged in glass or aluminum. If I look for paper packaged products, it has to be paper packaging that is clean of food oils. I tend to buy very few products that have packaging in the first place, but this is my criteria.

So I thought I would run through a simple and basic run down of the life cycle of a glass container, so here it goes:

  1. The consumer throws glass into a recycle bin.
  2. Glass is taken from the bin and taken to a glass treatment plant.
  3. The glass is sorted by colour and washed to remove any impurities.
  4. The glass is then crushed and melted, then moulded into new products such as bottles and jars. Or it may be used for alternative purposes such as brick manufacture or decorative uses.
  5. The glass is then sent back to the shops ready to be used again.
  6. Glass does not degrade through the recycling process, so it can be recycled again and again.

Some Fact About Recycling Glass:

  • Glass is 100% recyclable and can be recycled endlessly without loss in quality or purity.
  • Glass is made from readily-available domestic materials, such as sand, soda ash, limestone and “cullet,” the industry term for furnace-ready recycled glass.
  • The only material used in greater volumes than cullet is sand. These materials are mixed, or “batched,” heated to a temperature of 2600 to 2800 degrees Fahrenheit and molded into the desired shape.
  • Recycled glass can be substituted for up to 95% of raw materials.
  • Manufacturers benefit from recycling in several ways: Recycled glass reduces emissions and consumption of raw materials, extends the life of plant equipment, such as furnaces, and saves energy.
  • Recycled glass containers are always needed because glass manufacturers require high-quality recycled container glass to meet market demands for new glass containers.
  • Recycled glass is always part of the recipe for glass, and the more that is used, the greater the decrease in energy used in the furnace. This makes using recycled glass profitable in the long run, lowering costs for glass container manufacturers—and benefiting the environment.
  • Glass containers for food and beverages are 100% recyclable, but not with other types of glass. Other kinds of glass, like windows, ovenware, Pyrex, crystal, etc. are manufactured through a different process. If these materials are introduced into the glass container manufacturing process, they can cause production problems and defective containers.
  • Color sorting makes a difference, too. Glass manufacturers are limited in the amount of mixed color-cullet (called “3 mix”) they can use to manufacture new containers. Separating recycled container glass by color allows the industry to ensure that new bottles match the color standards required by glass container customers.
  • Some recycled glass containers are not able to be used in the manufacture of new glass bottles and jars or to make fiberglass. This may be because there is too much contamination or the recycled glass pieces are too small to meet manufacturing specifications. Or, it may be that there is not a nearby market for bottle-to-bottle recycling. This recovered glass is then used for non-container glass products. These “secondary” uses for recycled container glass can include tile, filtration, sand blasting, concrete pavements and parking lots.
  • The recycling approach that the industry favors is any recycling program that results in contaminant-free recycled glass. This helps ensure that these materials are recycled into new glass containers. While curbside collection of glass recyclables can generate high participation and large amounts of recyclables, drop-off and commercial collection programs tend to yield higher quality recovered container glass.

I do think that if you need to consume products that are packed, please consider the type of packaging that it comes in. It may cost a little more to buy the glass jar of mustard instead of the plastic bottle, but our oceans are riddled with plastic trash that gets lost through the transportation process or even dumped carelessly. Eventually, it will get back to us and then there will have to be a whole new strategy for us to figure out how to not consume plastic from the animals that accidentally consume it first. It is a nightmare loop, but we can either take preventative measures or create ways to try to exit it.

Understanding Recycling Electronics

 

10.11.2016

0800

ewaste-recycling-process

Electronic Waste Link

The electronics recycling process has always left me wondering if all of our electronics gets recycled properly. There are so many bits and parts to electronics, it’s hard to believe that there would be no trash leftover to end up in the landfill. In recent years, with documentaries revealing where our old electronic end up, it’s a bit discouraging for me to invest in any new electronics. Although it’s an uncomfortable reality, I prefer to be informed more than leave my understanding in the hands of the media or brush it off. I like to find out truths no matter how painful it can be. This knowledge also helps me shape the decisions in my life so that I can make more informed decisions for my home and family in the future. I thought I would post some information and facts about electronic waste for anyone who might want to know the ugly truth.

  1. Electronics are Difficult To Recycle
    1. Recycling electronics isn’t like recycling cardboard. These products are not easy to recycle. Proper and safe recycling often costs more money than the materials are worth. Why?
  2. Electronics are not designed for recycling
    1. Materials used and physical designs make recycling challenging. While companies claim to offer “green electronics,” we are a far way from truly green products.
    2. Many electronic products are designed for the dump. They have short-life spans, or become obsolete quickly. They are often expensive to repair, and sometimes it’s difficult to find parts. Many consumer-grade electronics products are cheaper to replace than to fix even if you can find someone to fix it. Because they are designed using many hazardous compounds, recycling these products involves processing toxic material streams, which is never 100% safe.
    3. Some of the problematic toxic materials that must be removed before recycling are lead in cathode ray tube (CRT) TV monitors and mercury lamps in LCD screens, as well as PVC, flame retardants, and other toxic additives in plastic components..
    4. Before electronics companies can make the claim that they are green and sustainable, they must shift away from producing “disposable” products designed with a limited lifespan (planned obsolescence) and towards products that are designed to last. Instead of purchasing products with high failure rates and the need for frequent replacement, we should be able to choose long-living, upgradeable goods that have long warranties and can be efficiently repaired and recycled
  3. Electronics contain many toxic materials
    1. Monitors and televisions made with tubes (not flat panels) have between 4 and 8 pounds of lead in them. Most of the flat panel monitors and TV’s being recycled now contain less lead, but more mercury, from their mercury lamps. About 40% of the heavy metals, including lead, mercury and cadmium, in landfills come from electronic equipment discards.
  4. Discarded Electronics Are Managed Badly = Most e-waste still goes in the landfill
    1. The EPA estimates that in 2011, the US generated nearly 3.4 million TONS of e-waste. But only about 25% of that was collected for recycling. The other 75% went to landfills and incinerators, despite the fact that hazardous chemicals in them can leach out of landfills into groundwater and streams, or that burning the plastics in electronics can emit dioxin.
  5. Most Recyclers Don’t Recycle, They Export
    1. And what about the 25% that is supposedly recycled? Most recycling firms take the low road, exporting instead of recycling. A large amount of e-waste that is collected for recycling is shipped overseas for dismantling under horrific conditions, poisoning the people, land, air, and water in China, other Asian nations and to Ghana and Nigeria in western Africa.
    2. When we drop off our old computers at an e-waste collection event, or have a recycler come and get them from our offices, we want to believe that the recycler is going to do the right thing: to reuse them if possible, and handle them in ways that are safe for workers and the environment. Electronics contain many toxic chemicals, and so a responsible recycler is one that is making sure that he – and the other vendors he may sell parts or materials to – is managing all aspects of the business as safely as possible..
  6. Global e-Waste Dumping
    1. The problem is that many electronics recyclers don’t actually recycle the electronics they collect from us. They can make more money by selling old electronic products to exporting waste traders than by processing it here in the U.S. Traders send it to developing countries where workers earn extremely low wages (often a few dollars per day) and where health and safety and environmental laws, enforcement, infrastructure and citizens’ rights are very weak.
    2. Simply stated, we are solving our e-waste problem by exporting it to poor countries around the globe.

Primitive Processing Contaminates Workers, Residents

In these countries, the e-waste ends up in backyard recycling operations, often literally behind peoples’ homes. One example is Guiyu, China, an area where a lot of our e-waste goes. They use crude and unsafe methods of taking apart our old computers and TVs to get to and remove the metals, which they can sell, causing great harm in the process. These dangerous practices include:

  1. Bashing open cathode ray tubes with hammers, exposing the toxic phosphor dust inside.
  2. Cooking circuit boards in woks over open fires to melt the lead solder, breathing in toxic lead fumes.
  3. Burning wires in open piles to melt away the plastics (to get at the copper inside).
  4. Burning the plastic casings, creating dioxins and furans – some of the most poisonous fumes you can breathe.
  5. Throwing the unwanted (but very hazardous) leaded glass into former irrigation ditches
  6. Dumping pure acids and dissolved heavy metals directly into their rivers.
  7. These horrific working conditions plus weak labor standards in China and many of the other developing countries where e-waste is sent, mean that women and children are often directly exposed to lead and other hazardous materials.

How much e-waste do we export each year?

There have been no rigorous studies of exactly how much e-waste we export to developing nations. Industry experts estimate that of the e-waste that recyclers collect, roughly 50-80 % of that ends up getting exported to developing nations. That would mean that we export enough e-waste each year to fill 5126 shipping containers (40 ft x 8.5 ft). If you stacked them up, they’d reach 8 miles high – higher than Mt Everest, or commercial flights.

Understanding Recycling Aluminum Cans

Recycling

10.07.2016

0800

can-recycling-cycle

Aluminum Can Recycling Link

Aluminum seems to be one of the more common materials in the United States in which the public is reminded to recycle consistently. It’s a great material that can be reused and can create a closed loop system if recycled properly.The infographic above shows the lifecycle of an aluminum can from beginning to end.

In a nutshell the process of recycling an aluminum can goes as follows:

  1. The consumer throws aluminium cans and foil into a recycle bin.
  2. The aluminium is then collected and taken to a treatment plant.
  3. In the treatment plant the aluminium is sorted and cleaned ready for reprocessing.
  4. It then goes through a re-melt process and turns into molten aluminium, this removes the coatings and inks that may be present on the aluminium.
  5. The aluminium is then made into large blocks called ingots. Each ingot contains about 1.6 million drinks cans.
  6. The ingots are sent to mills where they are rolled out, this gives the aluminium greater flexibility and strength.
  7. This is then made into aluminium products such as cans, chocolate wrapping and ready meal packaging.
  8. In as little as 6 weeks, the recycled aluminium products are then sent back to the shops ready to be used again.

Some Facts About Aluminum Recycling:

  • It saves 95% of the energy compared to making aluminium from its raw materials (known as primary production).
  • It saves 95% of the greenhouse gas emissions compared to the primary, or smelting, process.
  • It saves raw materials. It reduces the space needed for landfill – where waste is buried in holes in the ground.

If you are a consumer of aluminum cans in your day to day life, please recycle the can or save it to recycle later if there aren’t any recycling locations nearby. It makes a great difference in how we continually use our resources from nature.

Understanding Recycling Batteries

 

10.06.2016

0800

recyclingprocess

Recycling Car Batteries Link

rmc-recycling

Processing Alkaline Batteries Link

electronic-recycling

Recycling Lithium Batteries Link

I question the honesty of how items are recycled (especially electronics) and to be more informed is always better. The next series of posts I’m going to post up with cover a small section of the majority of materials that are deemed recyclable. Although the concept of recycling seems like a savior process for all items- it really isn’t. There are uncomfortable truths that the public is not informed about. I hope these next posts will be helpful for those who are seeking more information.

In a nutshell, batteries vary in how they are recycled. Batteries range from lead acid based to alkaline, lithium ion, nickel, zinc and even mercury batteries. Here is an overall information haul about the variety of them but I also included links to some recycling processes under the infographics above. I always hear mixed reviews as to what actually happens to batteries when we recycle them and this is why I thought I should post some information. I tend to use more alkaline and lithium batteries in my day to day life, so those infographics apply more to me. Hopefully this will bring some more information to you as you come into contact with your day to day electronics that use batteries.

  1. Lead Acid– The battery is broken apart in a hammer mill, a machine that hammers the battery into pieces. The broken battery pieces are then placed into a vat, where the lead and heavy materials fall to the bottom and the plastic floats. At this point, the polypropylene pieces are scooped away and the liquids are drawn off, leaving the lead and heavy metals. Each of the materials goes into a different recycling “stream”.
    1. Plastic- Polypropylene pieces are washed, blown dry and sent to a plastic recycler where the pieces are melted together into an almost liquid state. The molten plastic is put through an extruder that produces small plastic pellets of a uniform size. The pellets are put back into manufacturing battery cases and the process begins again.
    2. Lead- Lead grids, lead oxide and other lead parts are cleaned and heated within smelting furnaces. The molten melted lead is then poured into ingot molds. After a few minutes, the impurities float to the top of the still molten lead in the ingot molds. These impurities are scraped away and the ingots are left to cool. When the ingots are cool, they’re removed from the molds and sent to battery manufacturers, where they’re re-melted and used in the production of new batteries.
    3. Sulfuric Acid- Old battery acid can be handled in two ways:
      1. The acid is neutralized with an industrial compound similar to household baking soda. Neutralization turns the acid into water. The water is then treated, cleaned, tested in a wastewater treatment plant to be sure it meets clean water standards.
      2. The acid is processed and converted to sodium sulfate, an odorless white powder that’s used in laundry detergent, glass and textile manufacturing.Lead acid batteries are closed-loop recycled, meaning each part the the old batteries is recycled into a new battery. It is estimated that 98% of all lead acid batteries are recycled.
  2. Alkaline batteries– Alkaline batteries such as (AAA, AA, C, D, 9V, etc.) are recycled in a specialized “room temperature,” mechanical separation process where the battery components are separated into three end products. These items are a zinc and manganese concentrate, steel, and paper, plastic and brass fractions. All of these products are put back into the market place for reuse in new products to offset the cost of the recycling process. These batteries are 100% recycled.

  3. Lithium Ion– Prior to the recycling process, plastics are separated from the metal components. The metals are then recycled via a high temperature metal reclamation (HTMR) process during which all of the high temperature metals contained within the battery feedstock (i.e. nickel, iron, manganese and chromium) report to the molten-metal bath within the furnace, amalgamate, then solidify during the casting operation. The low-melt metals (i.e. zinc) separate during the melting. The metals and plastic are then returned to be reused in new products. These batteries are 100% recycled.

  4. Nickel-Cadmium- Prior to the recycling process, plastics are separated from the metal components. The metals are then recycled via a high temperature metal reclamation (HTMR) process during which all of the high temperature metals contained within the battery feedstock (i.e. nickel, iron, manganese, and chromium) report to the molten-metal bath within the furnace, amalgamate, then solidify during the casting operation. The low-melt metals (i.e. zinc and cadmium) separate during the melting. The metals and plastic are then returned to be reused in new products. These batteries are 100% recycled.

  5. Nickel Metal Hydride– Prior to the recycling process, the plastics are removed from the cell portion. The cells go through a drying process to remove moisture (potassium hydroxide (KOH) electrolyte and H2O) from the cells. The drying process heats the cells in a time and temperature controlled manner via a proprietary and proven formula. Once these cells are dried they become a valuable feedstock for the stainless steel and or alloy manufacturing industries.  The metals and plastic are then returned to be reused in new products. These batteries are 100% recycled.

  6. Lithium Batteries– The contents of the batteries are exposed using a shredder or a high-speed hammer depending on battery size. The contents are then submerged in caustic (basic not acidic) water. This caustic solution neutralizes the electrolytes, and ferrous and non-ferrous metals are recovered. The clean scrap metal is then sold to metal recyclers to offset the cost of recycling these batteries. The solution is then filtered. The carbon is recovered and pressed into moist sheets of carbon cake. Some of the carbon is recycled with cobalt. The lithium in the solution (lithium hydroxide) is converted to lithium carbonate, a fine white powder. What results is technical grade lithium carbonate, which is used to make lithium ingot metal and foil for batteries. It also provides lithium metal for resale and for the manufacture of sulfur dioxide batteries.

  7. Mercury Batteries– The batteries and heavy metals are recovered through a controlled-temperature process. It’s important to note: the percentage of mercuric oxide batteries is decreasing since the passage of the Mercury-Containing Rechargeable Battery Management Act (The Battery Act) of 1996. This act prohibits, or otherwise conditions, the sale of certain types of mercury-containing batteries (i.e., alkaline manganese, zinc carbon, button cell mercuric-oxide and other mercuric-oxide batteries) in the United States.

  8. Zinc-Carbon– Zinc-carbon (AAA, AA, C, D, 9V, etc.) and zinc-air batteries are recycled in the same way as alkaline batteries or by using high temperature metal reclamation (HTMR) method to melt the metals. These metals are then reused in new products. These batteries are 100% recycled.

  9. Zinc-Air– Zinc-carbon (AAA, AA, C, D, 9V, etc.) and zinc-air batteries are recycled in the same way as alkaline batteries or by using high temperature metal reclamation (HTMR) method to melt the metals. These metals are then reused in new products. These batteries are 100% recycled.