How To Recycle CDs, DVDs And Cases

05.08.2019

0600

Tools:

Materials:

  • Old CDs (Compact Discs)
  • Old DVDs (Digital Versatile Discs)
  • Old CD and DVD cases

When it comes to recycling CDs and DVDs, the information was never really clear as to where to recycle these type of materials. I did some research and found out that there is The CD Recycling Center of America, who provides that exact service.

Each year, billions of CDs and DVDs are manufactured, while millions of these discs end up in landfills and incinerators. If you use, sell, promote, distribute, or manufacture compact discs, it is your responsibility to promote how to recycle them. Compacts Discs, when recycled properly, will stop unnecessary pollution, conserve natural resources, and help slow global warming. Spread the word to help us save the world we all live in.

For those companies that require a certificate of destruction, that service is available as well.

The CD Recycling Center of America collects old CDs, DVDs and cases and securely deconstructs the items. CDs and DVDs contain different metals and materials that should be separated safely. They contain materials such as:

  • Aluminum-the most abundant metal element in the Earth’s crust. Bauxite ore is the main source of aluminum and is extracted from the Earth.
  • Polycarbonate-a type of plastic, which is made from crude oil and natural gas extracted from the Earth.
  • Lacquer-made of acrylic, another type of plastic.
  • Gold-a metal that is mined from the Earth.
  • Dyes-chemicals made in a laboratory, partially from petroleum products that come from the Earth.
  • Other materials such as water, glass, silver, and nickel.

There are different programs offered to different types of business and institutions, so the parameters of how they will receive your recycling material will differ. All you have to do, is scroll down to your category and pick the program that fits your needs. They have programs for:

  • Individuals / households
  • Schools
  • Libraries
  • Musicians
  • Recording Studios
  • Radio & Television
  • Duplicators/Replicators
  • Small Businesses
  • Recycling companies


Since I’m recycling as a household, I checked the “Programs” tab, and scrolled down to the “Individuals / households” section, to read my requirements.

They do ask that the broken disc cases be kept separated from the other cases. I separated my shipment into four categories, and labeled them as needed:

  1. Discs = ” CDs / DVDs / HD-DVD / Blu-ray Discs Only”
  2. Cases = ” Cases Only”
  3. Paper covers/inserts = “CD paperwork Only”
  4. Sleeves = “Discs Sleeves Only”
  5. Broken Cases = “Broken Cases Only”


Since I live in California, my mailing destination was Salem, New Hampshire. I packed up my envelope of items and sent it out:

The CD Recycling Center 
CD Recycling Center of America 
68E Stiles Road 
Salem NH 03079

By recycling your old CDs, DVDs and cases with the CD Recycling Center of America, you’ll generate less trash and keep the landfill free of the harmful metals and materials.

Learn more about this program at http:// http://cdrecyclingcenter.org/

Advertisements

Zero Waste Week 2018

08.12.2018

0600

ambassador-tree-trans

Zero Waste Week is almost here! This year we have more participants and the event is hoping to reach a larger audience. Rachelle Strauss is the creator and director behind Zero Waste Week, an annual awareness campaign since 2008. It takes place in the first full week in September each year, and promotes awareness in producing rash and the disposal of trash. Zero Waste Week encourages the public to be more aware of how much trash they produce as well has encouraging people and businesses to live and work more sustainable and reduce their carbon footprint. She has been featured in The Guardian, National Geographic and The Sun for her efforts in promoting awareness for a more sustainable future.

This is my second year participating in Zero Waste Week as an ambassador. I’m so grateful and proud to be a part of this movement. There are many others who are and have been a part of this movement long before I came along, you can meet them at Zero Waste Week Ambassadors. You can also read all about this week and get involved at Zero Waste Week- About Use the hashtag #ZeroWasteWeek to show us your progress! 

Each day has a theme of Zero Waste which focuses on different aspects of creating less waste. For Zero Waste Week 2018, I listed the topic for each day and I linked some of my blog posts that pertain to each topic

September 3, 2018, DAY 1

We will be discussing the difference between ‘necessary’ and unnecessary plastics. The amount of plastic polluting the ocean is astounding. By 2050,plastic in the oceans will outweigh fish, predicts a report from the Ellen MacArthur Foundation, in partnership with the World Economic Forum. Herare a few past blog posts which explain how and why I became very conscientious about my purchases. 

  1. Shopping At Thrift Stores
  2. 5 Questions to ask Before Purchasing
  3. My 30 Piece Capsule Wardrobe
  4. Zero Waste Shopping And Why

September 4, 2018, DAY 2

Auditing our daily personal care routine! Plastic containers in the bathroom are nothing new. However, because we use bathroom items so frequently, the amount of plastic containers we go through can be unnerving when you  look at the statistics. As the zero waste movement has caught on, more stores are offering bulk bathroom items and refill stations. If you want to read about some of my zero waste bathroom blog posts, check them out below. 

  1. A Zero Waste Bathroom
  2. Bulk Bathroom Shopping Kit
  3. DIY Simple Face Exfoliant And Facial Mask
  4. Bathroom Update
  5. Toilet Paper Is Not Zero Waste
  6. What I Stopped Buying- Bathroom Items

September 5, 2018, DAY 3

Plastics in the kitchen and food packaging seem to be a huge problem for those starting out on their zero waste journey. To make your kitchen zero waste, can be quite challenging.  Creating a zero waste kitchen took time and trial and error in my own experience. To read more about the challenges I faced, check out the blog posts below. 

  1. Bulk Grocery Shopping Kit
  2. Food And Bath Storage Containers
  3. Zero Waste Shopping And Why
  4. What I Stopped Buying- Kitchen Items
  5. How To Store Fruits And Vegetables Without Plastic Bags

September 6, 2018, DAY 4

Household cleaning seems to be a sensitive subject for many. There are a variety of sanitary concerns and medical concerns. As for me, I use a vinegar and water mix, baking soda and a bristle brush to clean. You can read more about my method in the link below. 

  1. Zero Waste Cleaning

September 7, 2018, DAY 5

Zero Waste is for life, not just a week! Plastic pollution, trash pollution, water and soil pollution is an ongoing battle. A zero waste lifestyle does require an awareness of oneself and decisions. There are parameters that some of us deal with, and that others don’t, such as medical conditions, personal health and financial constraints. As long as the effort and awareness of product consumption is considered on a day to day basis, reducing trash is inevitable. If you want to read about my moments and lessons throughout my zero waste journey, you can check out the links to my previous blog posts below. 

  1. A Zero Waste Lifestyle
  2. Seven Tips To Begin A Zero Waste Lifestyle
  3. Zero Waste And Minimalism
  4. Spreading the Zero Waste Word
  5. Sometimes You’ll Produce Trash

I hope you will want to take the pledge and reduce the amount of trash you consume, and if you want to read about my journey and how I got started, you can read that here in, How I Got StartedAt the end of the week’s festivities, it’s time to take all you’ve learned during the week and start/continue your own plastic free journey. There are a lot of Pinterest boards, Facebook Groups and forums that offer tips to start a zero waste lifestyle or tips for different experiences with the zero waste lifestyle. You can check out my own social media boards and follow me, or you can follow the Zero waste Week community on Facebook, Twitter, Pinterest, and Instagram

Celebrate Earth Day 2018

03.15.2018

0600

Earth-Day

 

Earth Day is an annual event celebrated on April 22. Worldwide, various events are held to demonstrate support for environmental protection. First celebrated in 1970, Earth Day events in more than 193 countries are now coordinated globally by the Earth Day Network.

This year, in the celebration of Earth Day, I thought I’d walk through my process of how to do a plastic audit in your home. But first, let’s take a look at the dangers of plastic and why it is not as recyclable as we are lead to believe.

EDUCATE YOURSELF ON PLASTICS

  • What do you know about plastics? Although it is one of the most common packaging material used worldwide, it ends up in our landfill and our oceans. It eventually makes its way back to us through the foods we consume. There are also a lot of facts that are not widely known, here are some facts from the Plastic Pollution Coalition.
  • Although it was considered one of  the breakthrough materials discovered in 1907, only now are we realizing the damaging consequences of using this material so rapidly. How is it harmful?
  • There is a huge misconception that all plastics can be recycled, however, that is not the case. Microplastics are small plastic particles in the environment. They come from a variety of sources, including cosmetics, clothing, and industrial processes.Two classifications of microplastics currently exist: primary microplastics are manufactured and are a direct result of human material and product use, and secondary microplastics are microscopic plastic fragments derived from the breakdown of larger plastic debris like the macroscopic parts that make up the bulk of the Great Pacific Garbage Patch. Both types are recognized to persist in the environment at high levels, particularly in aquatic and marine ecosystems.Because plastics do not break down for many years, they can be ingested and incorporated into and accumulated in the bodies and tissues of many organisms. The entire cycle and movement of microplastics in the environment is not yet known, but research is currently underway to investigate this issue. Here is more information from the National Ocean Service, What are microplastics?
  • Why is recycling not effective? Learn about the different types of plastics

HOW TO TAKE ACTION TO REDUCE PLASTIC IN YOUR HOME

  • What plastics can you REDUCE or better yet, REFUSE in your home? Track the amount of plastic used in different rooms/areas of your home by using the  Daily And Monthly Plastic Pollution Chart (this chart is a template, feel free to customize it)
    • Keep track of items that are contained in plastic by going through areas such as your: (add or take out any items that are missing or not applicable in the chart)
      • Kitchen
      • Bathroom
      • Bedroom
      • Home interior
      • Home exterior
      • Home etc.
    • Slowly go through and keep track of each item on a daily basis or monthly basis
  • After charting each item, plan how to avoid  purchasing plastics by using the Plastic Pollution Audit Chart. What actions will you take to reduce the amount of plastic being brought into the home? Can you refuse the plastic packaged product by finding an alternative in a non-packaged form? Or would reducing the amount taken in be a better step for you? Maybe consider investing in a sustainable, resuseable product, so you eliminate the single use plastic product.
  • If you choose to keep track of your plastic use on a monthly basis, you can audit each month by recording how much plastic you use and compare your yearly results using the Plastic Pollution Tracker.

SOME OTHER ACTIVITIES TO CELEBRATE EARTH DAY

  1. Around your home
    1. Change out all of your light bulbs to energy efficient CFL or LED light bulbs. The energy savings of cooler-burning bulbs, including CFL and LED, can have a significant impact on your utility bills and on making your home greener. An Energy Star light bulb replaces about six incandescent light bulbs because it lasts six times longer than the average light bulb.
    2. Change out your dangerous household cleaners with safer versions or make your own from vinegar/apple cider vinegar and water. Vinegar is a mild acid, which makes it a great multi-purpose cleaner for around the house. As a household cleaner, vinegar can be used to do anything from removing stains, to unclogging drains, to disinfecting, to deodorizing, and it can even be used to remove stickers. You can use it undiluted, combined with baking soda, or as an ingredient in a homemade household cleaner, and every room in your house can benefit from vinegar in some way. Check out 45 Uses For Vinegar.
    3. If you have the option of drinking tap water, switch to tap water or buy a attachment filter if needed.
    4. Stop catalogs and junk mail by signing up with Data and Marketing Association
    5. Opt out of credit card solicitations with Opt Out PreScreen
    6. Pack your car with reusable grocery bags so you won’t forget them on the next shopping trip
    7. Watch environmental documentaries to learn more about what has been researched and discovered through these films. Here is a list of some movies I found on Youtube in which you can watch for free.
      1. Home (2009 film)
      2. A Fragile World (Climate Change). Full Documentary
      3. Plastic: the Real Sea Monster (Full Environmental Documentary) I Spark
      4. China’s Wealth, Growth, and Environmental Nightmare (full Documentary) 
      5. Zero Waste in Business: Documentary on Business and Environmental Waste (Full Documentary) 
      6. A World Without Water (Environmental Catastrophe Documentary) 
      7. The World in 2050 [The Real Future of Earth] – Full BBC Documentary 2018
      8. The Antarctica Challenge: A Global Warning
      9. Years of Living Dangerously Premiere Full Episode 
      10. Plasticized – Feature Documentary Film 
  2. With your community
    1. Bike or take public transportation instead of driving. Instead of driving everywhere, try taking public transportation, biking or even walking to places.
    2. Schedule a visit your local recycling center and tour the facilities to understand where your trash goes and how it gets sorted. It sounds strange but every piece of trash we throw away has a different route towards recycling or on its way to the landfill.  Each county and each state has different recycling processes and so learning about your local recycling process is always helpful. You’ll be more informed and more aware of what REALLY happens when you recycle your trash.
    3. Join a local park, river or beach clean up.
    4. Plant a tree, herb garden, or even flowers!
    5. Check out your local city’s or county’s Earth Day activities

Earth Day will be celebrated on April 22, 2018 this year, so you still have over a month to decide what you want to do! Check out the Earth Day Network to find out more information. They have an extensive website that has a list of campaigns and activities for participants.

In the honor of Earth Day, check out some of these  blog posts from other fellow bloggers:

Upcycling Milk Crates to a Shoe Rack

02.06.2018

0600

Materials:

  • 2 Milk crates (about 12″ cubes)
  • Twelve 2″ Multi-Purpose Construction Screws
  • (Optional) Three 1″ wood screws – (for creating the holes)
  • 2 Wood boards (12″ x 11-1/4″ x 1/2″)
  • 16 small screws for holding seats in place
  • Pencil

Tools:

  • Power Screwdriver
  • Table saw / Mitre Saw (or saw it by hand with a rip hand saw)

So I needed a small bench shoe rack piece of furniture. All of the designs and products I flipped through on the internet weren’t quite what I had in mind. I needed a fairly short lengthed bench that didn’t need to store a lot of shoes. I also wanted a compact design. I only own six pairs of shoes and I don’t wear them all in the same season so the rest of the room would be for my family.

I knew I had a few milk crates, which I saw the potential use for this project. It was simple idea and I knew what I wanted the final product to look like.

The interior space within each milk crate was 12″ wide, 12″ high and 10-1/4″ deep. The height of the crate was enough room for two levels for shoe storage.

DSC_8825 - Copy

Since I was going to use two milk crates, I went ahead and found two random wood boards about 1/2″ thick. The boards I found were slightly wider than the depth of the crates, but I left the extra inch for larger shoes.

So using a miter saw, I cut each piece of wood board down to 12″ x 11-1/4″.

DSC_8834 - Copy

Next I divided the interior height in half and created a guideline down the middle. Since the crate is plastic, I used an exacto blade to lightly score the midline.

DSC_8837

Using the wood screws and my power screwdriver, I pinpointed the locations of where I wanted my 2″ screws to be located. I like using the wood screws when locating holes in plastic because I can hold the shank of the screw and still guide the power screwdriver to create the straight hole.

wood screw Diagram

DSC_8838

After the holes are created, I took the 2″ Multi-Purpose Construction Screws and screwed them into the premade holes.

DSC_8841DSC_8843

For the four screws that were located further towards the back of the box, I screwed the 2″ Multi-Purpose Construction Screws inwards. And for the two screws located towards the opening of the box, I screwed them outwards.

I wanted the back of the box to be supported more since it was further back. Also, I didn’t want anything sharp located towards the front opening.

DSC_8842 - Copy (2)

I simply install each box with a board, placing the boards on top of the screws. The boards fit well and were snug enough where they didn’t move either.

Most shoes are longer than 10-1/4″, so leaving the extra 1″ helps with different sized shoes. If you need to store boots or shoes that wouldn’t fit the original designed space, you can simply remove one of the boards and the two screws closest to the opening. (I left the two screws here to show the original design)

So there you have it, you can create a simple seat and shoe storage very quickly and with simple materials. You can install a wood board on top to create a bench or stack these crates on top of a 2″ x 4″ frame to have one more level. There’s a variety of designs this can break out into. I might just do that when the spring season rolls around.

Hope this post jogged up ideas!

DSC_8858 - Copy

DSC_8853 - Copy

Update:

I wanted to secure a seat on top of the crates so I took another extra piece of wood board and lined it next to the piece I usually keep on top of the creates.

DSC_9711

I took my pencil and traced the crate pattern on the underside of each board and then used small screws to outline at least two crate holes using the small screws. In order to know where I had to place my screws, I flipped my screws over so that they would be standing on their heads and then gauged where the sharp end of the screw would land. The head of the screws had to hug the insides of the traced corner, so I knew where to place it. Wherever the screw could touch both edges of the location, was where I knew I had to place the screw.

I measured the location for the screws in this manner because I wanted the screw to fit right inside of the hole I traced. The head of the screw as well as the thread of the screws had to fit comfortably into the existing holes, once it was flipped over.

DSC_9708

I didn’t screw the screws in the entire length of the thread, so be very aware of the depth of the wood piece you pick out and the screw length that you choose as well. The idea here was to still have the screws sticking out of the board so it would fit nicely into the holes that were traced.

DSC_9708DSC_9705

Once I placed the boards back onto the crates, the top was created into a quick seat to use while putting on shoes (or taking them off).

 

DSC_9721

So there you have it! I like this much more now with the seat on top, and secured into place.

 

Upcycled Coat Rack From Spoons

01.09.2018

0600

Materials:

  • Wood board (18 inches long x 5 inches wide 1-1/2 inches deep)
  • Four 3 inch wood screws
  • Ten 1-1/2 inch wood screws
  • 5 Spoons

Tools:

  • Power Drill
  • Power Screwdriver
  • Needle Nose Pliers
  • Slip Joint Pliers
  • Safety glasses
  • Gloves

DSC_8162DSC_8164

So I wanted to make a coat hanger but I didn’t want to buy one. Apparently I had materials at home to make one of my own. This project is a fairly easy DIY for any of you who are curious.

My board was 18 inches wide and I wanted a minimum of 1 inch on each side, for margins. This left me with 16″ to work with. So initially I wanted to use 7 spoons for the hangers, but after I measured the distance, I decided to only use 5 spoons.

DSC_8171-2

I divided the board up into three sections. The height of my board was 5-1/2″, but if you don’t want to use numbers, simply take a piece of paper and fold it into thirds. Then with a pencil, mark the first line and then the second. I wanted to offset my rows of spoons so the red line is for the top row of spoons and the green line is for the center of the bottom row of spoons.

Where the red line and margins intersect is where I drilled my top mounting holes. My bottom mounting holes is where the green line and the margins intersect. These holes are marked by the yellow circles in the image.

DSC_8179-2

For the spoons, I wanted to drill 2 holes to mount each spoon and I knew I had to create hooks by manipulating the spoons. I picked out a drill bit that was a similar size diameter of my screws I was going to use on the spoons. Usually I choose a drill bit smaller than my screw, but that working with wood only. When working with metal, you want a drill bit that the same size as the screw since metal won’t give. Also, if you don’t choose a drill bit smaller than your screw, there’s a good chance you’ll strip the screw’s threads as you drill.

The green line marks the point of where I wanted my spoons to bend upwards, so they could be used as hooks.

DSC_8173-2

When I drilled the holes, I wore gloves and my safety glasses because the metal slivers would fly off of the power drill. I applied slow but steady pressure while holding the spoon still and then I dumped the metal shavings into one side of my purple container. I did this to contain the shavings but also because it would be easier to discard them after I finished.

DSC_8184

I first started bending the spoons by using the edge of my step ladder, then I used my Slip Joint Pliers to hold the spoon while using the Needle Nose Pliers to bend the spoons into hooks.

DSC_8169

Once all of the spoons had holes drilled into them, I spaced the spons apart from each other in three inch increments. I proceed to attach the spoons to the board. For the wall mount attachment holes, I sunk the holes into the wood so that there was a slight design detail. I initial had made 2 drill holes so that I could mount it to the stud in the wall (those are the extra holes you see floating on the left half of  the board), but I changed my mind and decided to directly attach it to the drywall instead. Because I was planning to use three inch screws, I knew that mounting it to the drywall wouldn’t be a problem.

But because I changed my mind on which drill holes I wanted to use to mount the coat rack, I now had two random holes that looked out of place. To fix this, I mirrored the holes to the other side of the board and then filled in the extra holes will extra wood filler we had left over.

DSC_8185

I centered my coat rack and attached it to my wall. As you can see, the mistake holes look like design elements with the wood filler.

DSC_8198DSC_8200

So there it is, my coat rack made from spoons. These spoons are a few extra spare spoons from my mother’s kitchen and I really like that I was able to upcycle these extra spoons, knowing that a part of her kitchen was now used in an item I really needed. It’s a nice homage to my mom in a subtle way.

Our homes and possessions hold a great deal of different types of materials in which we can reuse and upcycle into new items.   Once you breakdown how different types of materials are used, the possibilities are endless. Scan your home and surroundings, I’m sure you’ll find a lot of resources.

 

 

Upcycling Fabric Shower Curtains

12.05.2017

0600

Materials:

  • Two 72″ x 72″ Fabric Shower Curtains

Tools:

  • Sewing Machine
  • Sewing Kit

 

DSC_6896

Fabric Shower curtains are usually  made with polyester fabric. A few years ago, I had ordered extra fabric shower curtains and I really wanted to use up the material. I had previously posted a quick blog post about using fabric shower curtains as temporary screens for doors in Alternative Screen For Doors.

But now I wanted to see if I could upcycle the material again for another purpose.  This upcycling project works well if you have solid color curtains. I wanted to create a sheer curtain layer to hang with each of the three sets of my existing window curtains. I thought it would be interesting to upcycle my extra fabric shower curtains to sheer curtains for my windows. I still like the patterns I choose and with the sheer curtains up against my windows, the patterns would be illuminated as the sun hit them each morning.

So I took down each of my existing window curtains and measured them to see how much fabric I needed from the shower curtains. The width of the window wasn’t a problem since I had 72″ to work with. The only variable was the height of each curtain.

For my multicolored shower curtain, I divided the shower curtain in half length wise and width wise equally. I had planned to use the top half of this curtain to create my first sheer window curtain set. The bottom half would be combined with the top half of the bamboo curtain, to create the third set of window curtains.

InterDesign Vivo Botanical Fabric Shower Curtain-72x 72, Purple-Tan- LG - Copy

For my bamboo print shower curtain, I measured the height that I initially wanted starting from the bottom of the curtain. I did this because I wanted the second curtain set to be completely covered by the pattern. I left the white void at the top of the bamboo curtain because I knew I was going to use it in the third set of window curtains. I had planned to sew the top half of the bamboo shower curtains to the bottom half of the multicolored shower curtain to create the last set of sheer window curtains.

InterDesign Anzu Shower Curtain, Green- LG2 - Copy

I then pinned the edges that had been cut using sewing pins and hemmed them to clean up the trim around the shower curtain.

DSC_6889

Since the width of each shower curtain piece was wider than the individual window curtain pieces, I tucked and folded the shower curtain pieces to fit each window curtain width accordingly. I only sewed about 6″ up the shower curtain piece to hold the folded in piece in place, and across the bottom. You can sew the entire height of the folded piece, but I simple choose not to.

DSC_6893

DSC_6892

Since I know I want to keep these curtain designs as is, I decided to sew the new sheer curtain layer to my existing window curtains.  You don’t have to sew them, you can use safety pins as a temporary solution if you’re not sure about keeping the sheer layers, or if you want to change them out. Make sure you decide which side of the sheer curtain you want to face towards the window and which side of your existing window curtain you want to face inwards into your home. I personally don’t care about what my curtain looks like to the outside world so I have the nicer pattern facing inwards. This is why adding a sheer layer helps the presentation of my curtains to the outside world.

DSC_6891

To secure my curtains, I had initially made cord tiebacks with leftover material from an old bed sheet, in order to keep my curtains open. With the new sheer layer, I can tie back the solid color window curtain and leave the sheer layer or I can wrap them both back to let in even more sunlight.

 

Adopted 16 Acres Of Wildlife Land

05.30.2017

0700

Who knew that when I joined TerraCycle, that I would end up adopting and protecting 16 acres of land. Let me start from the beginning…

I first joined TerraCycle in an attempt to recycle my beauty products, this included my makeup and bathroom product bottles. They offer programs that will collect certain kinds of trash and recycle them. They have free recycling programs, large scale recycling programs as well as zero waste boxes, which are not free.

There were about 28 free recycling programs when I first joined in 2015 and they now they have about 36 free recycling programs. The programs all have a different point reward system for how much trash you’re able to return to the program. They also offer a variety of contests and promotions for different programs at different times.

You can collect points and either receive a cash reward, collect point for a specific school or organization or donate the points to a good cause.  The organizations can provide resources such as clean drinking water, provide a meals, adopt wildlife land, reduce two pounds of carbon from the atmosphere, provide education or even help disaster victims.

As for me, I donated my points to adopting 1,800 square feet of wildlife land and I wanted to know more about the program so I visited National Wildlife Federation’s Adopt a Wildlife Acre Program.

Here is the conflict:

Yellowstone is home to the most diverse assortment of wildlife found anywhere in North America. But once these iconic species leave the protected borders of the park—they are often at odds with neighboring ranchers who utilize public lands for livestock grazing. Grizzly bears and wolves are often killed or relocated when they attack livestock on National Forest lands where ranchers hold grazing privileges.

National Wildlife Federation’s Adopt a Wildlife Acre program addresses the conflicts between livestock and wildlife with a voluntary, market-based approach. We offer ranchers a fair price in exchange for their agreement to retire their public land grazing leases.

In most cases, livestock producers use our funds to relocate their livestock to areas without conflict. Wildlife has secure habitat, and rancher’s cattle can graze in an area with fewer problems.

It’s an interesting program and I really liked contributing to it. I initially donated my points to towards this program but then, decided to make a donation to cover more of how much I was helping protect the wildlife land.

This goes without saying, but there are many different organizations to donate to and it’s up to you to decide how much you want to participate in each. I wanted to share what the decision of joining a recycling program lead me to.  I never thought I’d adopt 16 acres of wildlife land. This has been an amazing journey and I’m so glad I took a chance to start with this organization.

untitled
adopt-36-sq-feet-of-wildl Page 002

Sewed Fabric Bags For My Makeup Tools

05.23.2017

0600

DSC_5473

So originally, I had created these bags for my Utensil To-Go Kit, and I realized that I could create smaller bags for my make-up tools. So I tested it out and this is what I came up with.

I had some old zippers from awhile back that I never used and these were a great fit. I first undid and removed the drawstring from the bag. Then I cut the original bag in half and sewed the sides of each to create two smaller bags. Because I cut straight thorough the original drawstring hem, I took the string and also cut that in half.

I measured each zipper and made appropriate cuts on the front of each bag for each zipper. Using small sewing pins, I attached each zipper to each bag and then I hand sewed the zippers to the bags. I inserted the smaller drawstrings through the new drawstring hems and tied them off.

The end product were bags that could be accessed through the zipper or through the top where the drawstring closed the bag. This was an interesting solution because when I place items in these type of bag designs, I never have items of all the same height. This bag allows me to access the taller items from the top opening and the smaller items from the front where the zipper is located. I’ve used this for make up tools, writing utensils and also my “Take Out Silverware Kit” that I keep in my purse.

DSC_5474DSC_5475DSC_5480DSC_5481DSC_5482DSC_5483

Understanding Recycling Light Bulbs

 

10.20.2016

0800

cfl-recycling-process

Recycling Light Bulbs Link

Trying to understand how light bulbs are recycled takes a little more research on my part. I honestly have never known how recycling centers go about recycling light bulbs. Due to the many different materials that make up light bulbs, I could only guess that the process was tedious. So here is an overall step by step process of the recycling process:

  1. Lamps are sent to the recycling facility
    1. Upon arrival at the recycling facility, lamps are removed from their containers and fed into specialized machine for recycling lamps. The entire process is fully automatic and incorporated in a container in which the air is brought to subpressure, thereby preventing mercury from being released into the environment.
  2. By-product separation
    1. With the aid of a sophisticated patented air transportation system, the phosphor powder is separated in different steps from the glass and metal by-products.
  3. Glass and aluminum stored
    1. Clean glass and aluminum end-caps are separated and stored for re-use.
  4. Mercury is isolated
    1. The mercury bearing powder is collected in distiller barrels beneath the cyclone and the self-cleansing dust filters
  5. Mercury is extracted
    1. The powder is then retorted to drive out the mercury.
  6. Elements are ready for re-use
    1. At the end of the process the glass, metal end-caps, powder, and mercury can all be re-used.
  7. Recycling certificate is issued
    1. Once the materials have been fully processed by the recycling facility, an official Certificate of Recycling will be produced and emailed to you for record keeping.

This is an overall general process of light bulb recycling. As much as you can- please, please recycle these products carefully and appropriately. There are a lot of different materials that go into the production process of producing lamps that can harm the environment and the toxic materials will always come full circle back to us.

Understanding Recycling Paper And Cardboard

 

10.18.2016

0800

paper_recycling_diagram

Paper Recycling Process Link

Paper is one of the more utilized materials that we use in our society. It’s an amazing material that is very versatile in many uses. Although recycling paper seems like a simple process, different types of paper, create different issues when it comes to the recycling process.

In 2011, 66.8 percent of paper consumed in the United States was recycled. Every ton of paper recycled saves more than 3.3 cubic yards of landfill space, and if you measure by weight, more paper is recovered for recycling than plastic, aluminum and glass combined. Paper is a material that we’re used to recycling, since 87 percent of us have access to curbside or drop-off recycling for paper.

The process of recycling paper can be summed up into a few simple steps:

  1. Paper is taken from the bin and deposited in a large recycling container along with paper from other recycling bins.
  2. The paper is taken to a recycling plant where it is separated into types and grades.
  3. The separated paper is then washed with soapy water to remove inks, plastic film, staples and glue. The paper is put into a large holder where it is mixed with water to create ‘slurry’.
  4. By adding different materials to the slurry, different paper products can be created, such as cardboard, newsprints or office paper.
  5. The slurry is spread using large rollers into large thin sheets.
  6. The paper is left to dry, and then it is rolled up ready to be cut and sent back to the shops.

Here Are Some Facts About Paper Grades:

  • Paper Grades – There are five basic paper grade categories, according to theEPA. While these terms may be most useful to paper mills looking to process certain kinds of paper, you may hear these terms once in a while, and it’s possible you’ll need to be able to distinguish between them.
    • Old Corrugated Containers – You might know this as “corrugated cardboard.” It’s most often found in boxes and product packaging.
    • Mixed Paper – This is a broad category of paper that includes things like mail, catalogs, phone books and magazines.
    • Old Newspapers – This one is pretty self-explanatory. Mills use newspapers, a lower grade paper, to make more newsprint, tissue and other products.
    • High Grade Deinked Paper – This quality paper consists of things like envelopes, copy paper and letterhead that has gone through the printing process and had the ink removed.
    • Pulp Substitutes – This paper is usually discarded scraps from mills, and you probably won’t have to worry about running into it, though it may find its way into products you buy.

Some Paper Recycling Curiosities:

  • Once you know what kind of paper recycling is available to you and which types of paper are recyclable, you might still have some questions about paper recycling. Here are a few common items that cause confusion:
    • Shredded Paper – Ever wondered whether shredded paper can be recycled? The answer is yes, though you may encounter some restrictions regarding the size of the shredded pieces and the way the paper is contained. Check with your local recycling program for specific information.
    • Staples & Paper Clips – Believe it or not, equipment at paper mills that recycle recovered paper is designed to remove things like staples and paper clips, so you don’t need to remove them before recycling. It is probably in your best interest to remove paper clips, though, so they can be reused.
    • Sticky Notes – If your local recycling program accepts mixed paper, it will most likely accept sticky notes. Paper mills that process mixed paper are able to remove adhesives. To be on the safe side, check with your local program to make sure sticky notes aren’t a problem.

Understanding Recycling Glass

10.13.2016

0800

glassreyc

Glass Recycling Process Link

Of all the materials that we are continually reminded of as consumers to recycle, glass has to be within the top three on that list; the other being paper and aluminum. I have to admit that I prefer glass and aluminum over paper though. Paper cannot be washed clean of oils and for paper that has oil soaked into it, it can’t be recycled along with clean paper. The simple reason for that is because paper is usually heated and washed which will release the oils into the batch of paper being recycled and therefore contaminate the other clean paper. It will however, compost nicely.

But I digress. If I absolutely must buy a product, I will search for it first in a non-packaged form, then I will look for the product packaged in glass or aluminum. If I look for paper packaged products, it has to be paper packaging that is clean of food oils. I tend to buy very few products that have packaging in the first place, but this is my criteria.

So I thought I would run through a simple and basic run down of the life cycle of a glass container, so here it goes:

  1. The consumer throws glass into a recycle bin.
  2. Glass is taken from the bin and taken to a glass treatment plant.
  3. The glass is sorted by colour and washed to remove any impurities.
  4. The glass is then crushed and melted, then moulded into new products such as bottles and jars. Or it may be used for alternative purposes such as brick manufacture or decorative uses.
  5. The glass is then sent back to the shops ready to be used again.
  6. Glass does not degrade through the recycling process, so it can be recycled again and again.

Some Fact About Recycling Glass:

  • Glass is 100% recyclable and can be recycled endlessly without loss in quality or purity.
  • Glass is made from readily-available domestic materials, such as sand, soda ash, limestone and “cullet,” the industry term for furnace-ready recycled glass.
  • The only material used in greater volumes than cullet is sand. These materials are mixed, or “batched,” heated to a temperature of 2600 to 2800 degrees Fahrenheit and molded into the desired shape.
  • Recycled glass can be substituted for up to 95% of raw materials.
  • Manufacturers benefit from recycling in several ways: Recycled glass reduces emissions and consumption of raw materials, extends the life of plant equipment, such as furnaces, and saves energy.
  • Recycled glass containers are always needed because glass manufacturers require high-quality recycled container glass to meet market demands for new glass containers.
  • Recycled glass is always part of the recipe for glass, and the more that is used, the greater the decrease in energy used in the furnace. This makes using recycled glass profitable in the long run, lowering costs for glass container manufacturers—and benefiting the environment.
  • Glass containers for food and beverages are 100% recyclable, but not with other types of glass. Other kinds of glass, like windows, ovenware, Pyrex, crystal, etc. are manufactured through a different process. If these materials are introduced into the glass container manufacturing process, they can cause production problems and defective containers.
  • Color sorting makes a difference, too. Glass manufacturers are limited in the amount of mixed color-cullet (called “3 mix”) they can use to manufacture new containers. Separating recycled container glass by color allows the industry to ensure that new bottles match the color standards required by glass container customers.
  • Some recycled glass containers are not able to be used in the manufacture of new glass bottles and jars or to make fiberglass. This may be because there is too much contamination or the recycled glass pieces are too small to meet manufacturing specifications. Or, it may be that there is not a nearby market for bottle-to-bottle recycling. This recovered glass is then used for non-container glass products. These “secondary” uses for recycled container glass can include tile, filtration, sand blasting, concrete pavements and parking lots.
  • The recycling approach that the industry favors is any recycling program that results in contaminant-free recycled glass. This helps ensure that these materials are recycled into new glass containers. While curbside collection of glass recyclables can generate high participation and large amounts of recyclables, drop-off and commercial collection programs tend to yield higher quality recovered container glass.

I do think that if you need to consume products that are packed, please consider the type of packaging that it comes in. It may cost a little more to buy the glass jar of mustard instead of the plastic bottle, but our oceans are riddled with plastic trash that gets lost through the transportation process or even dumped carelessly. Eventually, it will get back to us and then there will have to be a whole new strategy for us to figure out how to not consume plastic from the animals that accidentally consume it first. It is a nightmare loop, but we can either take preventative measures or create ways to try to exit it.

Understanding Recycling Electronics

 

10.11.2016

0800

ewaste-recycling-process

Electronic Waste Link

The electronics recycling process has always left me wondering if all of our electronics gets recycled properly. There are so many bits and parts to electronics, it’s hard to believe that there would be no trash leftover to end up in the landfill. In recent years, with documentaries revealing where our old electronic end up, it’s a bit discouraging for me to invest in any new electronics. Although it’s an uncomfortable reality, I prefer to be informed more than leave my understanding in the hands of the media or brush it off. I like to find out truths no matter how painful it can be. This knowledge also helps me shape the decisions in my life so that I can make more informed decisions for my home and family in the future. I thought I would post some information and facts about electronic waste for anyone who might want to know the ugly truth.

  1. Electronics are Difficult To Recycle
    1. Recycling electronics isn’t like recycling cardboard. These products are not easy to recycle. Proper and safe recycling often costs more money than the materials are worth. Why?
  2. Electronics are not designed for recycling
    1. Materials used and physical designs make recycling challenging. While companies claim to offer “green electronics,” we are a far way from truly green products.
    2. Many electronic products are designed for the dump. They have short-life spans, or become obsolete quickly. They are often expensive to repair, and sometimes it’s difficult to find parts. Many consumer-grade electronics products are cheaper to replace than to fix even if you can find someone to fix it. Because they are designed using many hazardous compounds, recycling these products involves processing toxic material streams, which is never 100% safe.
    3. Some of the problematic toxic materials that must be removed before recycling are lead in cathode ray tube (CRT) TV monitors and mercury lamps in LCD screens, as well as PVC, flame retardants, and other toxic additives in plastic components..
    4. Before electronics companies can make the claim that they are green and sustainable, they must shift away from producing “disposable” products designed with a limited lifespan (planned obsolescence) and towards products that are designed to last. Instead of purchasing products with high failure rates and the need for frequent replacement, we should be able to choose long-living, upgradeable goods that have long warranties and can be efficiently repaired and recycled
  3. Electronics contain many toxic materials
    1. Monitors and televisions made with tubes (not flat panels) have between 4 and 8 pounds of lead in them. Most of the flat panel monitors and TV’s being recycled now contain less lead, but more mercury, from their mercury lamps. About 40% of the heavy metals, including lead, mercury and cadmium, in landfills come from electronic equipment discards.
  4. Discarded Electronics Are Managed Badly = Most e-waste still goes in the landfill
    1. The EPA estimates that in 2011, the US generated nearly 3.4 million TONS of e-waste. But only about 25% of that was collected for recycling. The other 75% went to landfills and incinerators, despite the fact that hazardous chemicals in them can leach out of landfills into groundwater and streams, or that burning the plastics in electronics can emit dioxin.
  5. Most Recyclers Don’t Recycle, They Export
    1. And what about the 25% that is supposedly recycled? Most recycling firms take the low road, exporting instead of recycling. A large amount of e-waste that is collected for recycling is shipped overseas for dismantling under horrific conditions, poisoning the people, land, air, and water in China, other Asian nations and to Ghana and Nigeria in western Africa.
    2. When we drop off our old computers at an e-waste collection event, or have a recycler come and get them from our offices, we want to believe that the recycler is going to do the right thing: to reuse them if possible, and handle them in ways that are safe for workers and the environment. Electronics contain many toxic chemicals, and so a responsible recycler is one that is making sure that he – and the other vendors he may sell parts or materials to – is managing all aspects of the business as safely as possible..
  6. Global e-Waste Dumping
    1. The problem is that many electronics recyclers don’t actually recycle the electronics they collect from us. They can make more money by selling old electronic products to exporting waste traders than by processing it here in the U.S. Traders send it to developing countries where workers earn extremely low wages (often a few dollars per day) and where health and safety and environmental laws, enforcement, infrastructure and citizens’ rights are very weak.
    2. Simply stated, we are solving our e-waste problem by exporting it to poor countries around the globe.

Primitive Processing Contaminates Workers, Residents

In these countries, the e-waste ends up in backyard recycling operations, often literally behind peoples’ homes. One example is Guiyu, China, an area where a lot of our e-waste goes. They use crude and unsafe methods of taking apart our old computers and TVs to get to and remove the metals, which they can sell, causing great harm in the process. These dangerous practices include:

  1. Bashing open cathode ray tubes with hammers, exposing the toxic phosphor dust inside.
  2. Cooking circuit boards in woks over open fires to melt the lead solder, breathing in toxic lead fumes.
  3. Burning wires in open piles to melt away the plastics (to get at the copper inside).
  4. Burning the plastic casings, creating dioxins and furans – some of the most poisonous fumes you can breathe.
  5. Throwing the unwanted (but very hazardous) leaded glass into former irrigation ditches
  6. Dumping pure acids and dissolved heavy metals directly into their rivers.
  7. These horrific working conditions plus weak labor standards in China and many of the other developing countries where e-waste is sent, mean that women and children are often directly exposed to lead and other hazardous materials.

How much e-waste do we export each year?

There have been no rigorous studies of exactly how much e-waste we export to developing nations. Industry experts estimate that of the e-waste that recyclers collect, roughly 50-80 % of that ends up getting exported to developing nations. That would mean that we export enough e-waste each year to fill 5126 shipping containers (40 ft x 8.5 ft). If you stacked them up, they’d reach 8 miles high – higher than Mt Everest, or commercial flights.

Understanding Recycling Aluminum Cans

Recycling

10.07.2016

0800

can-recycling-cycle

Aluminum Can Recycling Link

Aluminum seems to be one of the more common materials in the United States in which the public is reminded to recycle consistently. It’s a great material that can be reused and can create a closed loop system if recycled properly.The infographic above shows the lifecycle of an aluminum can from beginning to end.

In a nutshell the process of recycling an aluminum can goes as follows:

  1. The consumer throws aluminium cans and foil into a recycle bin.
  2. The aluminium is then collected and taken to a treatment plant.
  3. In the treatment plant the aluminium is sorted and cleaned ready for reprocessing.
  4. It then goes through a re-melt process and turns into molten aluminium, this removes the coatings and inks that may be present on the aluminium.
  5. The aluminium is then made into large blocks called ingots. Each ingot contains about 1.6 million drinks cans.
  6. The ingots are sent to mills where they are rolled out, this gives the aluminium greater flexibility and strength.
  7. This is then made into aluminium products such as cans, chocolate wrapping and ready meal packaging.
  8. In as little as 6 weeks, the recycled aluminium products are then sent back to the shops ready to be used again.

Some Facts About Aluminum Recycling:

  • It saves 95% of the energy compared to making aluminium from its raw materials (known as primary production).
  • It saves 95% of the greenhouse gas emissions compared to the primary, or smelting, process.
  • It saves raw materials. It reduces the space needed for landfill – where waste is buried in holes in the ground.

If you are a consumer of aluminum cans in your day to day life, please recycle the can or save it to recycle later if there aren’t any recycling locations nearby. It makes a great difference in how we continually use our resources from nature.

Understanding Recycling Batteries

 

10.06.2016

0800

recyclingprocess

Recycling Car Batteries Link

rmc-recycling

Processing Alkaline Batteries Link

electronic-recycling

Recycling Lithium Batteries Link

I question the honesty of how items are recycled (especially electronics) and to be more informed is always better. The next series of posts I’m going to post up with cover a small section of the majority of materials that are deemed recyclable. Although the concept of recycling seems like a savior process for all items- it really isn’t. There are uncomfortable truths that the public is not informed about. I hope these next posts will be helpful for those who are seeking more information.

In a nutshell, batteries vary in how they are recycled. Batteries range from lead acid based to alkaline, lithium ion, nickel, zinc and even mercury batteries. Here is an overall information haul about the variety of them but I also included links to some recycling processes under the infographics above. I always hear mixed reviews as to what actually happens to batteries when we recycle them and this is why I thought I should post some information. I tend to use more alkaline and lithium batteries in my day to day life, so those infographics apply more to me. Hopefully this will bring some more information to you as you come into contact with your day to day electronics that use batteries.

  1. Lead Acid– The battery is broken apart in a hammer mill, a machine that hammers the battery into pieces. The broken battery pieces are then placed into a vat, where the lead and heavy materials fall to the bottom and the plastic floats. At this point, the polypropylene pieces are scooped away and the liquids are drawn off, leaving the lead and heavy metals. Each of the materials goes into a different recycling “stream”.
    1. Plastic- Polypropylene pieces are washed, blown dry and sent to a plastic recycler where the pieces are melted together into an almost liquid state. The molten plastic is put through an extruder that produces small plastic pellets of a uniform size. The pellets are put back into manufacturing battery cases and the process begins again.
    2. Lead- Lead grids, lead oxide and other lead parts are cleaned and heated within smelting furnaces. The molten melted lead is then poured into ingot molds. After a few minutes, the impurities float to the top of the still molten lead in the ingot molds. These impurities are scraped away and the ingots are left to cool. When the ingots are cool, they’re removed from the molds and sent to battery manufacturers, where they’re re-melted and used in the production of new batteries.
    3. Sulfuric Acid- Old battery acid can be handled in two ways:
      1. The acid is neutralized with an industrial compound similar to household baking soda. Neutralization turns the acid into water. The water is then treated, cleaned, tested in a wastewater treatment plant to be sure it meets clean water standards.
      2. The acid is processed and converted to sodium sulfate, an odorless white powder that’s used in laundry detergent, glass and textile manufacturing.Lead acid batteries are closed-loop recycled, meaning each part the the old batteries is recycled into a new battery. It is estimated that 98% of all lead acid batteries are recycled.
  2. Alkaline batteries– Alkaline batteries such as (AAA, AA, C, D, 9V, etc.) are recycled in a specialized “room temperature,” mechanical separation process where the battery components are separated into three end products. These items are a zinc and manganese concentrate, steel, and paper, plastic and brass fractions. All of these products are put back into the market place for reuse in new products to offset the cost of the recycling process. These batteries are 100% recycled.

  3. Lithium Ion– Prior to the recycling process, plastics are separated from the metal components. The metals are then recycled via a high temperature metal reclamation (HTMR) process during which all of the high temperature metals contained within the battery feedstock (i.e. nickel, iron, manganese and chromium) report to the molten-metal bath within the furnace, amalgamate, then solidify during the casting operation. The low-melt metals (i.e. zinc) separate during the melting. The metals and plastic are then returned to be reused in new products. These batteries are 100% recycled.

  4. Nickel-Cadmium- Prior to the recycling process, plastics are separated from the metal components. The metals are then recycled via a high temperature metal reclamation (HTMR) process during which all of the high temperature metals contained within the battery feedstock (i.e. nickel, iron, manganese, and chromium) report to the molten-metal bath within the furnace, amalgamate, then solidify during the casting operation. The low-melt metals (i.e. zinc and cadmium) separate during the melting. The metals and plastic are then returned to be reused in new products. These batteries are 100% recycled.

  5. Nickel Metal Hydride– Prior to the recycling process, the plastics are removed from the cell portion. The cells go through a drying process to remove moisture (potassium hydroxide (KOH) electrolyte and H2O) from the cells. The drying process heats the cells in a time and temperature controlled manner via a proprietary and proven formula. Once these cells are dried they become a valuable feedstock for the stainless steel and or alloy manufacturing industries.  The metals and plastic are then returned to be reused in new products. These batteries are 100% recycled.

  6. Lithium Batteries– The contents of the batteries are exposed using a shredder or a high-speed hammer depending on battery size. The contents are then submerged in caustic (basic not acidic) water. This caustic solution neutralizes the electrolytes, and ferrous and non-ferrous metals are recovered. The clean scrap metal is then sold to metal recyclers to offset the cost of recycling these batteries. The solution is then filtered. The carbon is recovered and pressed into moist sheets of carbon cake. Some of the carbon is recycled with cobalt. The lithium in the solution (lithium hydroxide) is converted to lithium carbonate, a fine white powder. What results is technical grade lithium carbonate, which is used to make lithium ingot metal and foil for batteries. It also provides lithium metal for resale and for the manufacture of sulfur dioxide batteries.

  7. Mercury Batteries– The batteries and heavy metals are recovered through a controlled-temperature process. It’s important to note: the percentage of mercuric oxide batteries is decreasing since the passage of the Mercury-Containing Rechargeable Battery Management Act (The Battery Act) of 1996. This act prohibits, or otherwise conditions, the sale of certain types of mercury-containing batteries (i.e., alkaline manganese, zinc carbon, button cell mercuric-oxide and other mercuric-oxide batteries) in the United States.

  8. Zinc-Carbon– Zinc-carbon (AAA, AA, C, D, 9V, etc.) and zinc-air batteries are recycled in the same way as alkaline batteries or by using high temperature metal reclamation (HTMR) method to melt the metals. These metals are then reused in new products. These batteries are 100% recycled.

  9. Zinc-Air– Zinc-carbon (AAA, AA, C, D, 9V, etc.) and zinc-air batteries are recycled in the same way as alkaline batteries or by using high temperature metal reclamation (HTMR) method to melt the metals. These metals are then reused in new products. These batteries are 100% recycled.

Understanding Recycling Plastics

 

09.26.2016

0800

2016-06-29 18.07.48

Know Your Plastics

The Plastic Recycling Process

The plastic recycling process begins with sorting the various items by their resin content. The chart above shows the seven different plastic recycling symbols marked on the bottoms of plastic containers. The recycling mill sorts the used plastics by these symbols and may perform an additional sort based on the color of the plastic.

Once sorted, the plastics are chopped up into small pieces and chunks. These pieces are then cleaned to further remove debris like paper labels, residue from what was inside the plastic, dirt, dust, and other small contaminants.

Once cleaned, certain plastic pieces are melted down and compressed into tiny pellets called nurdles. Once in this state, the recycled plastic pellets are now ready to reuse and fashion into new and completely different products, as recycled plastic is hardly ever used to create the same or identical plastic item of its former self.

Does Recycling Plastics Work?

In a nutshell: yes and no. The plastic recycling process is fraught with flaws. Some of the dyes used in creating the plastic can be contaminated and cause an entire batch of potential recycling material to be scrapped. Additionally, there are still a large percentage of people who refuse to recycle, thus the actual numbers of plastics being returned for reuse is roughly 10% of what is purchased as new by consumers.

Another issue at stake is the fact that producing recycled plastic does not reduce the need for virgin plastic. However, plastic recycling can and does reduce the consumption of other natural resources like timber, due to its use in making composite lumber and many other products.

The 5-Step Process for Plastic Recycling

1. Collection – The recycling facilities gather available recyclable plastic material in their area, such as from roadside collections, special recycling bins, or even directly from industries. In this way, both post-consumer and post-industrial plastic items are collected.
2. Manual sorting – All plastic items that are collected are then sorted according to the various plastic types indicated by the plastic recycling symbols and codes on them. Unwanted non-plastic materials found in the piles are promptly taken out.
3. Chipping – After sorting, the sorted plastic products are prepared for melting by being cut into small pieces. The plastic items are fed into a machine which has sets of blades that slice through the material and break the plastic into tiny bits.
4. Washing – At this step in the process of recycling plastic, all residue of products originally contained in the plastic items and various other ‘contaminants’ (e.g. paper labels, dirt) are removed. A particular wash solution consisting of an alkaline, cationic detergent and water are used to effectively get rid of all the contaminants on the plastic material, making sure that all the plastic bits are clean and ready for the final step.
During washing, the wash tank agitator serves as an abrasive, stripping the adhesive off any labels and shredding any paper mixed in with the plastics. The alkaline, cationic detergent (which is similar to the formulas used in shampoos and fabric softeners) is used because plastic materials have a positive surface charge, and only positively-charged chemical compounds (which in this case are cationic detergents) can properly clean them, and effectively remove dirt and grease from the positively charged plastic surfaces.

5. Pelleting – The cleaned and chipped pieces of plastic are then melted down and put through a machine called an ‘extruder’ in this stage of the recycling plastic process. The extruder shapes the melted plastic into thin noodle-like tubes. The plastic tubes are then cut into small pellets by a set of rotating knives. The pellets are then ready to be reused and remade into new items.

What About the Bag?

Plastic bags go through the same five-step process as other plastic products. They too are sorted into their various plastic types, washed and rinsed. However, in the case of plastic bags, they are chopped rather than chipped. The chopped shreds of plastic bags are then melted down during the pelleting stage.
What’s Next?

The plastic pellets derived from the recycling plastic process are usually sold by the recycling company to other businesses which would then mold the plastic pellets into an assortment of plastic products for various uses. Some products use a combination of recycled plastic pellets and virgin plastic ones.